Instituto Federal São Paulo Curso de Licenciatura em Matemática

Dados de Identificação				
Professores:	Eduardo Palhares Júnior			
Disciplina:	MGAM2 - Geometria Analítica			
Tema:	Circunferência, cônicas e lugar geométrico			
Turma:	2º semestre - Matutino			

Gabarito P2

- 1 Questão Basta saber a definição de parábola.
- 2 Questão
- a Classificação e parâmetros importantes

a.1 Elipse
$$C_1: (x-1)^2 + \frac{(y+1)^2}{4} = 1 \Rightarrow 4x^2 + y^2 - 8x + 2y + 1 = 0$$

Centro:
 $O_1 = (1, -1)$

Semi-eixos: $\begin{cases} a^2 = 4 \\ b^2 = 1 \end{cases} : \begin{cases} a = \pm 4 \\ b = \pm 1 \end{cases}$

Relação pitagórica:
$$a^2 = b^2 + c^2 \Rightarrow c = \sqrt{3}$$

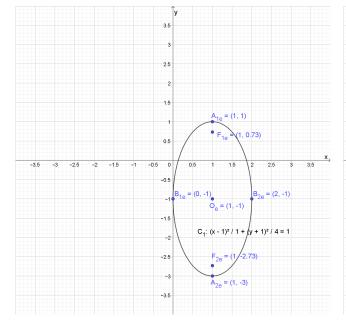
Focos: $\begin{cases} F_1 = (1, -1 + \sqrt{3}) \\ F_2 = (1, -1 - \sqrt{3}) \end{cases}$

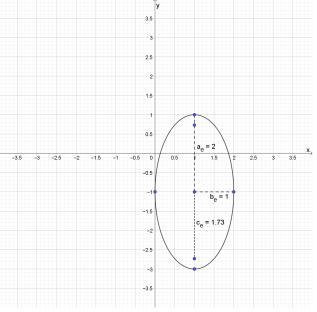
$$O_1 = (1, -1)$$

Semi-eixos:
$$\begin{cases} a^2 = 4 \\ b^2 = 1 \end{cases} \therefore \begin{cases} a = \pm 4 \\ b = \pm 1 \end{cases}$$

Focos:
$$\begin{cases} F_1 = (1, -1 + \sqrt{3}) \end{cases}$$

$$a^2 = b^2 + c^2 \Rightarrow c = \sqrt{3}$$



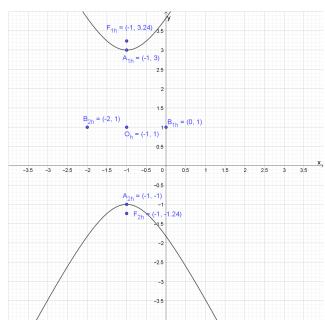


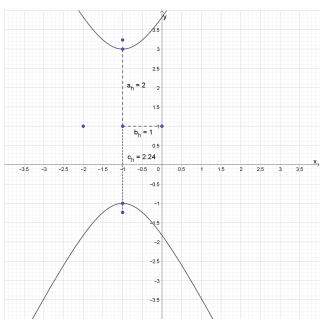
a.2 Hipérbole
$$C_2: \frac{(y-1)^2}{4} - (x+1)^2 = 1 \Rightarrow -4x^2 + y^2 - 8x - 2y - 7 = 0$$
Centro: Semi-eixos:
$$\begin{cases} a^2 = 4 \\ b^2 = 1 \end{cases} \therefore \begin{cases} a = \pm 4 \\ b = \pm 1 \end{cases}$$

Relação pitagórica:

$$c^2 = a^2 + b^2 \Rightarrow c = \sqrt{5}$$

Focos: $\begin{cases} F_1 = \left(-1, 1 + \sqrt{3}\right) \\ F_2 = \left(-1, 1 - \sqrt{3}\right) \end{cases}$





a.3 Parábola $C_3: y^2+3x=0 \Rightarrow y^2=-3x$

Equação padrão:

Parâmetro:

Foco:

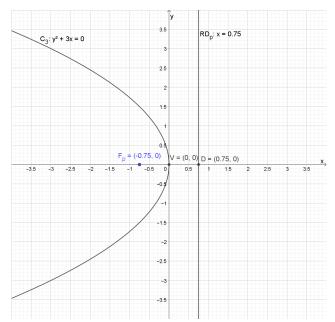
Reta diretriz:

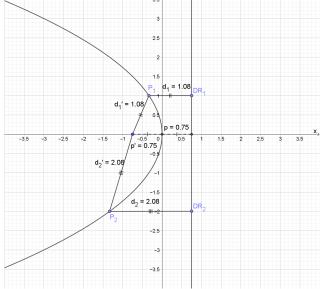
$$y^2 = -2px$$

$$p = \frac{3}{2}$$

$$F = \left(-\frac{3}{4}, 0\right)$$

$$x = \frac{3}{4}$$





b Curvas já traçadas

 ${\bf c}~$ Cálculo dos pontos de intersecção

c.1 Elipse e Hipérbole

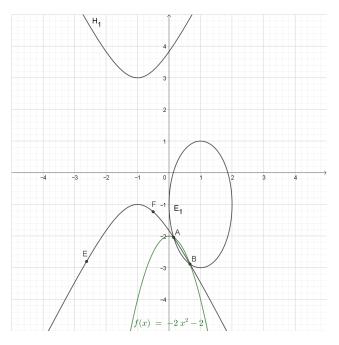
$$C_1 = C_2$$

$$4x^2 + y^2 - 8x + 2y + 1 = -4x^2 + y^2 - 8x - 2y - 7$$

$$y = -2x^2 - 2$$

$$\Delta_x < 0 : x_1, x_2 \notin \mathbb{R}$$

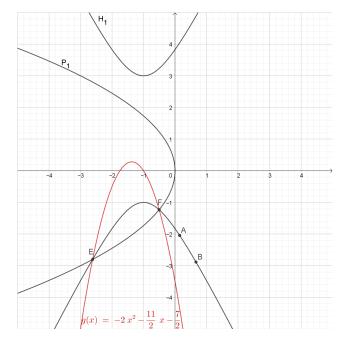
Igualando a parábola de intersecção a qualquer uma das curvas, é possível calcular os pontos de intersecção. A parábola de intersecção é o lugar geométrico (família de pontos) cujos pontos de intersecção pertencem, e apesar de as vezes ser difícil calcula-los, por inspeção é facil mostrar que existem e em que região aproximada estão.



c.2 Elipse e Parábola $C_1 = C_3 \Rightarrow 4x^2 + y^2 - 8x + 2y + 1 = y^2 + 3x$

$$y = \frac{-4x^2 + 11x - 1}{2} \Rightarrow \Delta_x = \frac{9}{4} \Rightarrow f(x) = 0 \begin{cases} x_1 = 1 \\ x_2 = \frac{7}{4} \end{cases}$$

É possível notar por inspeção que os valores encontrados não satisfazem as equações de cada curva no mesmo ponto, ou ainda, a imagem da elipse e da parábola são diferentes, o que torna a solução absurda. Portanto, não existem pontos de intersecção.



c.3 Hipérbole e Parábola

$$C_2 = C_3$$

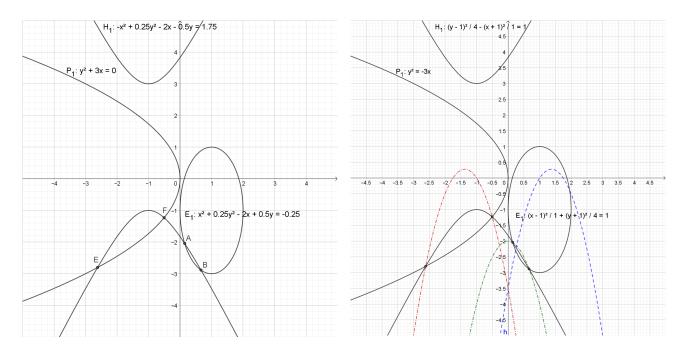
$$-4x^2 + y^2 - 8x - 2y - 7 = y^2 + 3x$$

$$y = \frac{-4x^2 - 11x - 7}{2}$$

$$\Delta_x = \frac{9}{4} \Rightarrow f(x) = 0 \begin{cases} x_1 = -\frac{7}{4} \\ x_2 = -1 \end{cases}$$

Há 2 pontos de intersecção entre a hipérbole e a parábola, e a curva encontrada é o lugar geométrico (família de pontos) que contém esses pontos. Apesar de ser difícil calculálos, basta esboçar a curva e encontra-los por inspeção.

Finalmente, podemos esboçar a solução final com todas as curvas e suas intersecções. Notemos que de fato, a curva de intersecção entre a elipse e a parábola fornecem uma solução absurda.



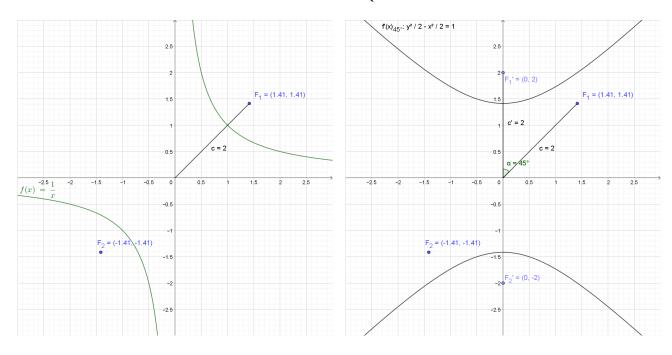
$$\textbf{3} \quad \textbf{Questão} \quad \text{Rotação de } 45^{\text{o}} \text{ da função } f(x) = \frac{1}{x} \Rightarrow \begin{cases} F_1 = \left(\sqrt{2}, \sqrt{2}\right) \\ F_2 = \left(\sqrt{-2}, \sqrt{-2}\right) \end{cases}$$
 Calculando metade da distância focal, ou seja, a distância entre um dos focos e a origem, tames su

temos:

$$c = \sqrt{(x_f - x_0)^2 + (y_f - y_0)^2} = \sqrt{(\sqrt{2} - 0)^2 + (\sqrt{2} - 0)^2} \Rightarrow c^2 = 4$$

Como a elipse é simétrica, podemos afirmar que a = b. Aplicando a relação pitagórica, temos:

 $c^2 = a^2 + b^2 \Rightarrow \begin{cases} a^2 = 2\\ b^2 = 2 \end{cases}$



4 Questão

Passo 1: Identificação dos parâmetros das curvas

Curva
$$S_1$$
: $x^2 - 2x + 1 + y^2 + 2y + 1 = 0$

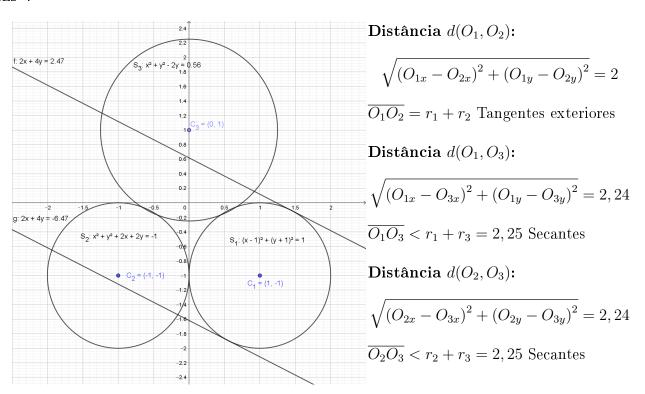
Curva
$$S_2$$
: Curva S_3 :

$$C_{2} = \left(-\frac{D}{2A}, -\frac{E}{2A}\right) \Rightarrow C_{2} = (-1, -1) \qquad C_{3} = \left(-\frac{D}{2A}, -\frac{E}{2A}\right) \Rightarrow C_{3} = (0, 1)$$

$$r_{2} = \frac{\sqrt{D^{2} + E^{2} - 4AF}}{2\|A\|} \Rightarrow r_{2} = 1 \qquad r_{3} = \frac{\sqrt{D^{2} + E^{2} - 4AF}}{2\|A\|} \Rightarrow r_{3} = 1, 25$$

C_x	C_y	r	Objeto	A	В	С	D	Ε	F
1	-1	1	S_1	1	1	0	-2	2	1
-1	-1	1	S_2	1	1	0	2	2	1
0	1	1,25	S_3	1	1	0	0	-2	-0,56
-	-	-	f	2	4	-2,47	ı	ı	=
-	-	-	g	2	4	6,47	-	-	-

Passo 2: Seguindo a primeira dica dada na prova, "Classifique e esboce as circunferências".



Passo 3: Seguindo a segunda dica dada na prova, "Se existirem, calcule os pontos de intersecção (ou a família de pontos)".

$$S_1 = S_2 \Rightarrow x^2 + y^2 - 2x + 2y + 1 = x^2 + y^2 + 2x + 2y + 1 : x = 0$$

Aplicando x = 0 em S_2 (por exemplo), temos $y^2 + 2y + 1 = 0 \Rightarrow y = -1$. Portanto o ponto de tangência é $P_{1,2} = (0, -1)$, o que é visualmente intuítivo.

$$S_1 = S_3 \Rightarrow x^2 + y^2 - 2x + 2y + 1 = x^2 + y^2 - 2y : 2x + 4y = -1,56$$

Passo 4: Seguindo a terceira dica dada na prova, "Observe a relação entre os pontos encontrados com f e g".

A reta obtida a partir da intersecção da S_1 com S_3 represente a familia de pontos, cujos pontos de intersecção pertencem. Notamos ainda que ela é paralela à f e g.

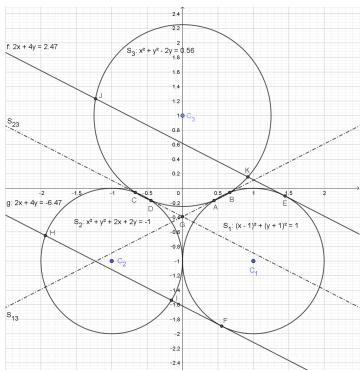
Para finalizar o esboço, basta calcular em que pontos a reta f e g interceptam S_1 .

$$d_{f,S_1} = \frac{\|A_f \cdot O_{1x} + B_f \cdot O_{1y}b + C_c\|}{\sqrt{A_f^2 + B_f^2}} = \frac{\|2 \cdot 1 + 4 \cdot (-1) - 2, 47\|}{\sqrt{2^2 + 4^2}} = \frac{-4, 41}{\sqrt{20}} \Rightarrow d_{f,S_1} = -1$$

$$d_{g,S_1} = \frac{\|A_f \cdot O_{1x} + B_f \cdot O_{1y}b + C_c\|}{\sqrt{A_f^2 + B_f^2}} = \frac{\|2 \cdot (-1) + 4 \cdot (-1) + 6,47\|}{\sqrt{2^2 + 4^2}} = \frac{4,41}{\sqrt{20}} \Rightarrow d_{g,S_1} = 1$$

Como $d_{f,S_1} = d_{g,S_1} = r_1$, sabemos que ambas as retas são tangentes.

		d	2r/r	Relação
S1	S2	2	2	Tg exterior
S1	S3	2,24	2,25	Secante
S1	f	1,00	1,00	Tangente
S1	g	1,00	1,00	Tangente
S2	S3	2,24	2,25	Secante
S2	f	1,89	1,00	Exterior
S2	g	0,11	1,00	Secante
S3	f	0,34	1,00	Secante
S3	g	2,34	1,00	Exterior
f	g			Paralela



Apesar dos pontos de intersecão restantes serem numericamente mais complicados de calcular, visualmente é simples classificar as retas em relação as circunferências.

O mais importante nesse exercícios é seguir as dicas para enxergar as simetrias e distâncias com valores numericamentes simples. A solução se torna bastante direta, tornando desnecessário calculos excessivos uma vez que se utilizou-se conceitos para filtrar o problema.

5 Questão Conceitual.